Hybrid Data Mining Models for Predicting Customer Churn
نویسندگان
چکیده
منابع مشابه
Predicting credit card customer churn in banks using data mining
In this paper, we solve the customer credit card churn prediction via data mining. We developed an ensemble system incorporating majority voting and involving Multilayer Perceptron (MLP), Logistic Regression (LR), decision trees (J48), Random Forest (RF), Radial Basis Function (RBF) network and Support Vector Machine (SVM) as the constituents. The dataset was taken from the Business Intelligenc...
متن کاملData Mining Techniques in Customer Churn Prediction
Customer churn prediction is one of the most important problems in customer relationship management (CRM). Its aim is to retain valuable customers to maximize the profit of a company. To predict whether a customer will be a churner or non-churner, there are a number of data mining techniques applied for churn prediction, such as artificial neural networks, decision trees, and support vector mac...
متن کاملHybrid Models Using Unsupervised Clustering for Prediction of Customer Churn
In this paper, we use two-stage hybrid models consisting of unsupervised clustering techniques and decision trees with boosting on two different data sets and evaluate the models in terms of top decile lift. We examine two different approaches for hybridization of the models for utilizing the results of clustering based on various attributes related to service usage and revenue contribution of ...
متن کاملPredicting Customer Churn: Extreme Gradient Boosting with Temporal Data
Accurately predicting customer churn using large scale time-series data is a common problem facing many business domains. The creation of model features across various time windows for training and testing can be particularly challenging due to temporal issues common to time-series data. In this paper, we will explore the application of extreme gradient boosting (XGBoost) on a customer dataset ...
متن کاملCustomer Churn Analysis In Banking Sector Using Data Mining Techniques
Customer churn has become a major problem within a customer centred banking industry and banks have always tried to track customer interaction with the company, in order to detect early warning signs in customer's behaviour such as reduced transactions, account status dormancy and take steps to prevent churn. This paper presents a data mining model that can be used to predict which customers ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Communications, Network and System Sciences
سال: 2015
ISSN: 1913-3715,1913-3723
DOI: 10.4236/ijcns.2015.85012